IEEE floating point

Results: 217



#Item
51Mathematics / Floating point / GPGPU / Machine epsilon / FLOPS / Arbitrary-precision arithmetic / Double-precision floating-point format / CUDA / IEEE 754-1985 / Computer arithmetic / Computing / Computer architecture

FOR PUBLICATION 1 Extended-Precision Floating-Point Numbers for GPU Computation

Add to Reading List

Source URL: andrewthall.org

Language: English - Date: 2009-07-08 17:59:34
52Computing / Floating point / Binary-coded decimal / IEEE 754-2008 / IEEE 754 revision / Rounding / Fixed-point arithmetic / Denormal number / Arithmetic precision / Computer arithmetic / Numbers / Mathematics

A Parallel IEEE P754 Decimal Floating-Point Multiplier Brian Hickmann, Andrew Krioukov, and Michael Schulte University of Wisconsin - Madison Dept. of Electrical and Computer Engineering Madison, WI 53706 {bjhickmann, kr

Add to Reading List

Source URL: www.cs.berkeley.edu

Language: English - Date: 2009-02-20 21:09:13
53Numbers / GPGPU / Floating point / BrookGPU / Machine epsilon / IEEE 754-2008 / Multiply–accumulate operation / Precision / Cg / Computer arithmetic / Computing / Computer architecture

Extended-Precision Floating-Point Numbers for GPU Computation Andrew Thall, Department of Computer Science, Allegheny College SUMMARY

Add to Reading List

Source URL: andrewthall.org

Language: English - Date: 2007-05-03 23:45:19
54Applied mathematics / William Kahan / Floating point / Computer / Numerical analysis / Parallel computing / Software bug / Algorithm / IEEE 754-2008 / Computer arithmetic / Computing / Mathematics

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Add to Reading List

Source URL: www.cs.berkeley.edu

Language: English - Date: 2011-02-15 13:00:10
55Mathematical physics / Matrix theory / Linear algebra / IEEE standards / Floating point / Eigenvalues and eigenvectors / Rounding / Interpolation / IEEE 754-2008 / Algebra / Mathematics / Computer arithmetic

Hyperbolic Interpolation and Iteration towards a Zero File: 9Sep09 Version dated September 16, 2009 6:48 am

Add to Reading List

Source URL: www.cs.berkeley.edu

Language: English - Date: 2009-09-16 09:49:40
56Data types / Arithmetic / Numerical analysis / Interval arithmetic / Infinity / Interval / Floating point / IEEE 754-2008 / Rounding / Mathematics / Computer arithmetic / Numbers

Interval Computations, No 4, 1994, pp. 100–129. Extended Interval Arithmetic in IEEE Floating-Point Environment Evgenija D. Popova1

Add to Reading List

Source URL: www.math.bas.bg

Language: English - Date: 2009-01-04 08:49:01
57Numerical analysis / Numbers / Kahan summation algorithm / Floating point / NaN / IEEE 754-2008 / Truncation error / Delaunay triangulation / CGAL / Computer arithmetic / Mathematics / Computing

CCCG 2007, Ottawa, Ontario, August 20–22, 2007 On the Design and Performance of Reliable Geometric Predicates using Error-free Transformations and Exact Sign of Sum Algorithms∗ Marc M¨orig†

Add to Reading List

Source URL: cccg.ca

Language: English - Date: 2008-10-28 21:26:56
58Arithmetic / NaN / Floating point / IEEE 754-2008 / Interval arithmetic / IEEE 754-1985 / Signed zero / Interval / Multiplication / Computer arithmetic / Mathematics / Numbers

Reliable Computing, 2, 2, 1996, ppInterval Operations Involving NaNs Evgenija D. Popova 0 Introduction

Add to Reading List

Source URL: www.math.bas.bg

Language: English - Date: 2009-01-04 08:49:00
59Mathematics / MPFR / Interval arithmetic / Rounding / OCaml / Arbitrary-precision arithmetic / X87 / Floating point / IEEE 754-2008 / Computing / Computer arithmetic / Computer architecture

Implementing an interval computation library for OCaml on x86/amd64 architectures Jean-Marc Alliot1 and Jean-Baptiste Gotteland1,2 and Charlie Vanaret1,2 and Nicolas Durand1,2 and David Gianazza1,2 Abstract. In this pape

Add to Reading List

Source URL: oud.ocaml.org

Language: English - Date: 2012-07-24 12:02:05
60Mathematics / Denormal number / Floating point / NaN / IEEE 754-2008 / Rounding / William Kahan / Software bug / Normal number / Computer arithmetic / Computing / Numbers

File: ARITH_17U version dated July 8, 2005 4:30 am A Brief Tutorial on Gradual Underflow Prepared for ARITH 17, Tues. 28 June 2005,

Add to Reading List

Source URL: www.cs.berkeley.edu

Language: English - Date: 2005-07-08 07:34:24
UPDATE